Further Applications of a Splitting Algorithm to Decomposition in Variational Inequalities and Convex Programming

نویسنده

  • Paul Tseng
چکیده

A classical method for solving the variational inequality problem is the projection algorithm. We show that existing convergence results for this algorithm follow from one given by Gabay for a splitting algorithm for finding a zero of the sum of two maximal monotone operators. Moreover, we extend the projection algorithm to solve any monotone affine variational inequality problem. When applied to linear complementarity problems, we obtain a matrix splitting algorithm that is simple and, for linear/quadratic programs, massively parallelizable. Unlike existing matrix splitting algorithms, this algorithm converges under no additional assumption on the problem. When applied to generalized linear/quadratic programs, we obtain a decomposition method that, unlike existing decomposition methods, can simultaneously dualize the linear constraints and diagonalize the cost function. This method gives rise to highly parallelizable algorithms for solving a problem of deterministic control in discrete time and for computing the orthogonal projection onto the intersection of convex sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Forward - Backward Splitting Methodfor Maximal Monotone

We consider the forward-backward splitting method for nding a zero of the sum of two maximal monotone mappings. This method is known to converge when the inverse of the forward mapping is strongly monotone. We propose a modiication to this method, in the spirit of the extragradient method for monotone variational inequalities, under which the method converges assuming only the forward mapping i...

متن کامل

Sequential Optimality Conditions and Variational Inequalities

In recent years, sequential optimality conditions are frequently used for convergence of iterative methods to solve nonlinear constrained optimization problems. The sequential optimality conditions do not require any of the constraint qualications. In this paper, We present the necessary sequential complementary approximate Karush Kuhn Tucker (CAKKT) condition for a point to be a solution of a ...

متن کامل

Variational inequalities on Hilbert $C^*$-modules

We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory  on  Hilbert $C^*$-modules is studied.

متن کامل

Relatively Relaxed Proximal Point Algorithms for Generalized Maximal Monotone Mappings and Douglas-Rachford Splitting Methods

The theory of maximal set-valued monotone mappings provide a powerful framework to the study of convex programming and variational inequalities. Based on the notion of relatively maximal relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing most of investigations on weak convergence using the proximal point algorithm in a r...

متن کامل

Complexity of variants of Tseng’s modified F-B splitting and Korpelevich’s methods for generalized variational inequalities with applications to saddle point and convex optimization problems

In this paper, we consider both a variant of Tseng’s modified forward-backward splitting method and an extension of Korpelevich’s method for solving generalized variational inequalities with Lipschitz continuous operators. By showing that these methods are special cases of the hybrid proximal extragradient (HPE) method introduced by Solodov and Svaiter, we derive iteration-complexity bounds for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 1990